Nano Bubble Ozone Technology

Posted by Kaleb Jensen on July 25, 2014 under Ozonated Water, Ozone Food Processing, Wastewater Treatment | Be the First to Comment

Ozone bubbles are used these days in several applications, but Ozone nano-bubbles can be used to purify water, improve the vitality of fish, animals, and plants.  It could also contribute to solving problems associated with biology, medicine, and food in the future. The secret is behind the high surface area of the nano-bubbles, which provides high mass transfer rates compared to traditional bubbles.

For example:Oyster

Ozone nano-bubble technology can purify waste water from the polymerized toner production process by using energy derived from the bursting of fine ozone bubbles (below 300 nano-meters in diameter). Water treated through this technology can be reused in the production process, thus providing a closed water recycling system. In this case, the process will save noticeable amount of money and energy in waste water treatment of polymerized toner production.

Nano-bubble ozonation of oyster will eliminate 99 percent of the calicivirus in oyster. Ozone nano-bubbles are very effective and are a new horizon in ozone technology.  Contact us today if you think this could be a very promising solution for your operation.

Phenol reduction with ozone in industrial wastewater

Posted by Joel Leusink on May 10, 2013 under Wastewater Treatment | Read the First Comment

Recently we ran successful pilot tests to evaluate phenol reduction with ozone in industrial wastewater.  Our customer was a waste management company that offers wastewater treatment services to it’s customers.  They will take wastewater from customers and process this water to safely discharge to the municipal wastewater system.

Limits on Phenol were lowered from 50 ppm to 1 ppm for an acceptable discharge limit to the municipal wastewater system.  This presented a problem to our customer as phenol levels from various locations could range from very low, to well over 50 ppm.  All of this water is mixed together in equalization tanks and processed with chemical processes, and ultra-filtration.  None of these processes were able to lower the phenol level below 8-12 ppm on average.

What is Phenol?

Phenol is an organic compound – C6H5OH.  Phenol is also known as carbolic acid.  Phenol is found in petroleum products, detergents, herbicides, and pharmaceutical drugs.  High levels of phenol are toxic and can cause permanent health issues.

Initial pilot test:

The first ozone pilot test consisted of a 300 g/hr ozone injection system recirculating water in the 5,000 gallon over a period of 12 hours of time.  This did successfully lower phenol levels and prove that ozone was a viable solution. See chart below for data:

 Test #1 Raw Treated
COD 13700 13200
FOG 113 96
Phenol 4.57 1.25
 Test #2 Raw Treated
COD
12100
12000
FOG
32
20.2
Phenol 7.3 0.82
 Test #3 Raw Treated
COD
9460
9550
FOG
64
34
Phenol 10.4 1.62
 Test #4 Raw Treated
COD
8830
9010
FOG
56.8
50.7
Phenol 8.73 0.431

 

This data did confirm that ozone was a viable option.   However, lower phenol levels were required, and a better process was required for process flow situations.

Final Pilot Test:

After initial processing the wastewater is stored in 5,000 gallon holding tanks prior to discharge.  Overall water flow rate for the processing plant is an average of 10 GPM when averaged over a 24 hour time-frame.  We decided to pull water from one holding tank treat that water with ozone at 10 GPM and pump that water to a second holding tank.

This new setup allowed for a 100 gallon contact tank to be used that could be operated under pressure up to 35 PSI to improve mass transfer of ozone into water.  Also, the smaller 100 gallon tank allowed for very high dissolved ozone levels to be maintained for about 10 minute of contact time.  See diagram below for details on this set-up:

Pilot Test Set-up diagram

Using the same 300 g/hr ozone injection system 300 g/hr of ozone was introduced into the water flow rate of 10 GPM for an effective ozone dosage rate of 132 mg/l.  Despite this lower ozone dosage rate improved phenol reduction was achieved.  This did achieve an acceptable phenol level of less than 1 ppm.  Phenol levels up to 12 ppm were consistently reduced to less than 1 ppm at water flow rates up to even 12 GPM, an ozone dosage rate of 110 ppm.

Cost Savings:

Phenol removal prior to ozone was performed with carbon vessels.  These did work well and achieve the necessary phenol reductions.  Carbon replacement was necessary every 2-weeks at a total cost of $15,000/month.  An ozone system to replace this carbon was rented at a cost of $3,900/month.  With electric and all maintenance costs total costs were still less than $5,000.month for a total savings of $10,000/month.

Conclusion:

This pilot test did show good results and proved two things.

First: Phenol reduction with ozone, in heavy industrial wastewater is possible and can be cost effective.

Second: using proper ozone mass transfer methods the efficiency of phenol reduction, and likely many other contaminates with ozone is much more efficient and offers large cost savings.

For more information on phenol reduction with ozone click here, to review the multiple papers published by the IOA.

Follow this link to learn more about ozone use in wastewater treatment

Pharmaceuticals in FIsh

Posted by Jamie Hansmann on April 2, 2013 under Wastewater Treatment | Be the First to Comment

A recent Time news article, “Tipsy Fish: When Anti-Anxiety Meds Get Into Rivers”, discusses the effect that pharmaceutical-laden wastewater discharge may have on the behavior of aquatic life – even though these micropollutant discharges are not considered toxic by current testing standards.

The article cites a Swedish study where perch, a type of schooling fish, were pulled from rivers downstream of a wastewater treatment facility.  These fish showed a bio-accumulation of Oxazepam, an anti-anxiety medication.  Further lab testing showed that perch exposed to higher levels of Oxazepam became more agressive and willing to strike out on their own.

This sort of behavior is completely out of the ordinary for schooling fish.  Indeed, a solitary schooling fish on its own in nature would almost certainly lead to its untimely demise.  So while this particular drug is not toxic to the fish in a classic sense, it could have detrimental affects on fish populations due to changes in behavioral mechanisms.

How does this relate to the world of ozone?  Current wastewater treatment technology fails to break down most micropollutants, including pharmaceuticals, which allows them to pass calmly into our rivers and lakes.  One possible solution being tested by wastewater researchers is the use of ozone to combat these micropollutants.  If the introduction of ozone does indeed prove successful at removing micropollutants from wastewater, it is one solution that may stem the ever-increasing tide of pharmaceuticals produced by our modern society.

If not, we can at least look forward to a future boom in wild-caught fish for the treatment of anxiety.

For more information about ozone research relating to micropollutants and pharmaceuticals, check out the IOA’s Ozone Engineering journal abstracts by searching the links here:

Ozone Pharmaceutical Research

Ozone Micropollutant Research

IOA Conference 2012 – Opening Reception

Posted by Joel Leusink on September 23, 2012 under International Ozone Association, Wastewater Treatment | Be the First to Comment

The International Ozone Association conference for 2012 officially kicked off tonight with a reception at the Harley-Davidson Museum.  The opening reception for the conference was held in the banquet hall of the museum, with open tours of the Museum after the meal and drinks.

.International Ozone Association

The opening reception was well attended with a great crowd of the International Ozone Association members.

Ozone conference 2012

The Harley museum offers a great venue with good views of the downtown Milwaukee area.  If you have not seen it, this is a beautiful facility offering a cafe, banquet hall, and a great historical overview of the history of Halrey-Davidson.

IOA conference at the Harley museum

Tomorrow morning the IOA show continues at the Hyatt Hotel in downtown Milwaukee with the opening reception beginning at 8 am, with technical sessions beginning at 10:30 AM.  This is always a great opportunity to learn more about the ozone industry and some of the new events and research taking place within the industry.

Update:  Further pictures from the IOA Opening Reception at the Harley Davidson Museum

Using Ozone to Clean Up Fracking

Posted by Joel Leusink on August 1, 2012 under Wastewater Treatment | 2 Comments to Read

Read full article HERE

Ecosphere’s new technology reduces the use of chemicals and helps natural-gas companies recycle water.

Ecosphere’s process replaces the biocides and descaling agents typically used in fracking water with an ozone-based treatment. Ozone itself isn’t benign, but Ecosphere produces it on site, so it doesn’t have to be transported, which reduces the chance of spills, the fuel needed for transport, and the wear and tear on roads—a major problem for communities with large fracking operations. The process lets well operators recycle water, reducing the total amount consumed and the amount of waste material that needs to be disposed of.

The use of ozone to treat water isn’t new, but it hasn’t been used much in part because it’s expensive. Ecosphere has found ways to reduce the amount of ozone needed by 90 percent. It uses a combination of approaches. First it flows water through proprietary structures that cause tiny bubbles to form and collapse—which is called cavitation. It also uses ultrasound to create more cavitation. In both cases, this breaks up biological contaminants in the water, making the ozone more effective, and creates free radicals that themselves help disinfect the water. The final step is to run an electrical current through the water, which causes some of the salts in the water to precipitate, reducing scaling. The process is cheaper than some other alternatives, such as UV treatment and desalination, the company says.

Read full article HERE

Cleared up: Ecosphere CEO Robbie Cathey holds up a jar full of dark untreated water, and cloudy water that’s been treated with his company’s technology. The treated water isn’t safe to drink, but it’s good enough for fracking.
Ecosphere Technologies

Wastewater Disinfection with Ozone – Pilot Test

Posted by Joel Leusink on April 5, 2012 under Wastewater Treatment | Be the First to Comment

We recently completed a pilot test using ozone for wastewater disinfection at a beef processing plant in Nebraska.  This pilot test proved to be a great success and will now move into a full scale implementation.  This is a recap on the pilot test that was performed.

Wastewater disinfection of E.coli was the main concern at this application.  The limit on E.coli was 126 CFU/ml in the wastewater stream.  Historically chlorine was used to meet these standards.  However the limit on residual chlorine at this site was very low (0.001 ppm).  To meet these standards additional chemicals are necessary.  As limits on E.coli are tightened additional costs increase for both chlorination and chlorination.  These increasing costs were the catalyst for ozone use at this location.

Total discharge wastewater flows range from 800 – 2000 GPM.  This water is piped through a 10″ pipe for about 1/2 mile to a creek.

This customer had no method of ozone contacting, and no on-site compressed air.  We decided to bring on-site a very high concentration ozone generator producing ozone from Liquid Oxygen Tanks (LOX).

Ozone Pilot system

Ozone was injected directly into the 10″ pipe in 2 separate locations using a proprietary ozone injection device.  See image below.

Ozone diffuser pipeline

Diagram below shows the entire system.  LOX tanks provided oxygen at high pressures that were regulated to 40 PSI.  This oxygen flowed at up to 80 LPM through the Semozon 250.3 Ozone Generator that was cooled with a recirculating water chiller.  The ozone was split via flow meters to 2 locations for ozone injection.

Ozone pilot test

Results:

Oxygen flows of 70 LPM produced 700 grams/hour of ozone at 11.6% by weight.  This provided a 1.71 ppm ozone dosage rate into 1800 GPM of water.  These parameters were used to collect data during the pilot test.

E.coli levels of 1700 cfu/ml were reduced to 30-40 cfu/ml consistently throughout the 1-week pilot test.  This was well below the required discharge limit of 126 cfu/ml.

Ozone proved to be a success in this application and has the potential to eliminate the need for chlorination, and chlorination.  Details on full scale implementation are in the works at this time.

For more information on ozone applications, and how ozone solutions can help you with your wastewater disinfection application contact us today.

 

Ozone use in Wichita Aquifer Project

Posted by Joel Leusink on January 10, 2012 under Wastewater Treatment | Be the First to Comment

Ozone Use in Wichita Aquifer Storage and Recovery Project

Mazzei  released this great informative video on the use of Mazzei products to dissolve ozone into water for the Wichita aquifer storage and recovery project.  This video shows the expertise that Mazzei has on large scale projects like this:


Mazzei Degas Separator was selected for the Wichita Aquifer Storage and Recovery Project. Mazzei’s GDT™ Degas Separator was chosen as the best method for entrained gas bubbles removal.

The expertise that Mazzei has on ozone mass transfer is also utilized on smaller applications with the commonly used ozone injectors and flash reactors.

Ozone static Mixer

Ozone Flash Reactor

Ozone Injector

Mazzei Ozone Injector

 

Ozone Solutions for EDC’s in Wastewater

Posted by Joel Leusink on January 6, 2012 under Wastewater Treatment | Be the First to Comment

Ozone Solutions for Endocrine Disrupting Chemicals in Wastewater.

Mazzei released this great video on the use of ozone to remove EDC’s from wastewater.  While this is a promo video for Mazzei products, it is still interesting as a promo video for ozone use in general:

For information on Mazzei injectors, and to buy online click HERE.

For information on Mazzei Flash Reactors, and to buy online click HERE.

Updated Ozone Injection System OSW-3

Posted by Joel Leusink on September 17, 2011 under Wastewater Treatment | Be the First to Comment

We recently updated our OSW-3 Ozone Injection System.  This is a small ozone injection system using an ozone generator with integrated air dryer.  This is a small and compact ozone injection system for use with water flows up to 10 GPM.  Following are the highlights of updates:

  • Improved contact tank allows for water pressures up to 50 PSI
  • New CM5 Grundfos Pump
  • Smaller footprint
  • Integrated water trap
  • Provisions for all the same optional automation as our popular Waterzone series

Low cost simple ozone injection system

The OSW-3 uses a PVC mixing tank to lower costs verses our stainless steel models.  The same stainless steel ozone injection pump is used on both the OSW-3 and the Waterzone Ozone Injection Systems.  This ensures maximum durability of the system for the long term.  In fact, many parts of these systems is same, this helps lower costs while providing a durable system.

Low cost ozone system

 

What is a Flash Reactor?

Posted by Joel Leusink on June 22, 2011 under Wastewater Treatment, Water Remediation | Be the First to Comment

The Flash Reactor manufactured by Mazzei Injector Company is yet another great tool to dissolving ozone gas into water.  This product has been in production for a few years now.  I wanted to take the time explain a little about where these might be used in an ozone injection system.

Ozone Compatible Flash Reactor

Typically a Flash Reactor would be used in conjunction with an Ozone Injector.  The Flash Reactor can be placed in line after the ozone injector to aid in mass transfer of ozone into the water.  Following is the description of the Flash Reactor from the Mazzei website.

The patented Mazzei® Flash Reactor™ is a uniquely innovative mixing chamber that incorporates a re-directional and shearing design of the gas/liquid water mixture that allows for a rapid dissolution and attainment of gas/liquid equilibrium.  The result is high mass transfer efficiency with minimal time required.

Ozone Compatible Flash Reactor

Research done on the flash reactor and ozone injector was performed by the Civil and Environmental Engineering Department, 3-093 Markin/CNRL Natural Resources Engineering Facility, University of Alberta, Edmonton, Canada.  This research abstract can be viewed HERE at the Mazzei Website.

A great use of the flash reactor is when ozone injected into water with an ozone injector at low pressures and improved mass transfer of ozone is desired.  Many systems can benefit from the addition of a Flash Reactor into the system to improve mass transfer of ozone without any other modifications of the system.

For more ordering and sizing information on the Mazzei Flash Reactor, visit our website HERE.

For technical help and engineering contact our application engineers, we would be happy to help you design a solution that works for you.